Litres per hour (l/h) | Cubic meters per hour (m3/h) |
---|---|
0 | 0 |
1 | 0.001 |
2 | 0.002 |
3 | 0.003 |
4 | 0.004 |
5 | 0.005 |
6 | 0.006 |
7 | 0.007 |
8 | 0.008 |
9 | 0.009 |
10 | 0.01 |
20 | 0.02 |
30 | 0.03 |
40 | 0.04 |
50 | 0.05 |
60 | 0.06 |
70 | 0.07 |
80 | 0.08 |
90 | 0.09 |
100 | 0.1 |
1000 | 1 |
Understanding the conversion between Litres per hour (L/h) and Cubic meters per hour (/h) is crucial in various fields, from environmental science to industrial processes. This page will explain the conversion process, provide real-world examples, and clarify common misconceptions.
The conversion between litres and cubic meters is based on a fixed relationship: 1 cubic meter equals 1000 litres. This relationship is derived from the metric system, which is based on powers of 10, making conversions straightforward.
Since we are converting litres per hour to cubic meters per hour, the time component remains the same. Therefore, the conversion factor applies directly.
To convert from L/h to /h, divide by 1000.
Formula:
Example: Convert 1 L/h to /h
To convert from /h to L/h, multiply by 1000.
Formula:
Example: Convert 1 /h to L/h
While there isn't a specific law or famous person directly associated with the litre-to-cubic meter conversion, the development of the metric system itself is a landmark achievement. The metric system, including units like the litre and meter, was standardized in France during the French Revolution in the late 18th century. This standardization aimed to create a universal and logical system of measurement, replacing the myriad of local units that varied from region to region. The French Academy of Sciences played a key role in defining these units, linking them to natural physical constants where possible (like the meter being initially defined based on the Earth's circumference). More on the history of the metric system can be found at NIST - SI Units
Water Flow in Irrigation:
Industrial Processes:
HVAC Systems:
Environmental Monitoring:
See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Cubic meters per hour to other unit conversions.
Litres per hour (L/h) is a common unit for measuring the rate at which a volume of liquid flows. Understanding its meaning and applications can be helpful in various fields.
Litres per hour (L/h) is a unit of volume flow rate. It indicates the volume of liquid, measured in litres, that passes a specific point in one hour. In simpler terms, it tells you how many litres of a substance are moving per hour.
The unit is formed by combining two fundamental units:
Therefore, 1 L/h means that one litre of a substance flows past a point in one hour.
The flow rate () in litres per hour can be calculated using the following formula:
Where:
Litres per hour are used in many practical applications.
While there isn't a specific "law" directly associated with litres per hour, the concept of flow rate is central to fluid dynamics, which is governed by laws like the Navier-Stokes equations. These equations describe the motion of viscous fluids and are fundamental in engineering and physics.
Often, you might need to convert between L/h and other flow rate units. Here are some common conversions:
Cubic meters per hour () is a unit of volumetric flow rate. It quantifies the volume of a substance that passes through a specific area per unit of time, specifically, the number of cubic meters that flow in one hour. It's commonly used for measuring the flow of liquids and gases in various industrial and environmental applications.
A cubic meter () is the SI unit of volume. It represents the amount of space occupied by a cube with sides of 1 meter each. Think of it as a volume equal to filling a cube that is 1 meter wide, 1 meter long, and 1 meter high.
"Per hour" indicates the rate at which the cubic meters are moving. So, a flow rate of 1 means that one cubic meter of substance passes a specific point every hour.
The volumetric flow rate (Q) in cubic meters per hour can be calculated using the following formula:
Where:
Several factors can influence the flow rate measured in cubic meters per hour:
While there's no specific "law" or famous historical figure directly associated with the unit "cubic meters per hour," the underlying principles are rooted in fluid dynamics and thermodynamics. Figures like Isaac Newton (laws of motion, viscosity) and Daniel Bernoulli (Bernoulli's principle relating pressure and velocity) laid the groundwork for understanding fluid flow, which is essential for measuring and utilizing flow rates in .
Convert 1 l/h to other units | Result |
---|---|
Litres per hour to Cubic Millimeters per second (l/h to mm3/s) | 277.77777777778 |
Litres per hour to Cubic Centimeters per second (l/h to cm3/s) | 0.2777777777778 |
Litres per hour to Cubic Decimeters per second (l/h to dm3/s) | 0.0002777777777778 |
Litres per hour to Cubic Decimeters per minute (l/h to dm3/min) | 0.01666666666667 |
Litres per hour to Cubic Decimeters per hour (l/h to dm3/h) | 1 |
Litres per hour to Cubic Decimeters per day (l/h to dm3/d) | 24 |
Litres per hour to Cubic Decimeters per year (l/h to dm3/a) | 8766 |
Litres per hour to Millilitres per second (l/h to ml/s) | 0.2777777777778 |
Litres per hour to Centilitres per second (l/h to cl/s) | 0.02777777777778 |
Litres per hour to Decilitres per second (l/h to dl/s) | 0.002777777777778 |
Litres per hour to Litres per second (l/h to l/s) | 0.0002777777777778 |
Litres per hour to Litres per minute (l/h to l/min) | 0.01666666666667 |
Litres per hour to Litres per day (l/h to l/d) | 24 |
Litres per hour to Litres per year (l/h to l/a) | 8766 |
Litres per hour to Kilolitres per second (l/h to kl/s) | 2.7777777777778e-7 |
Litres per hour to Kilolitres per minute (l/h to kl/min) | 0.00001666666666667 |
Litres per hour to Kilolitres per hour (l/h to kl/h) | 0.001 |
Litres per hour to Cubic meters per second (l/h to m3/s) | 2.7777777777778e-7 |
Litres per hour to Cubic meters per minute (l/h to m3/min) | 0.00001666666666667 |
Litres per hour to Cubic meters per hour (l/h to m3/h) | 0.001 |
Litres per hour to Cubic meters per day (l/h to m3/d) | 0.024 |
Litres per hour to Cubic meters per year (l/h to m3/a) | 8.766 |
Litres per hour to Cubic kilometers per second (l/h to km3/s) | 2.7777777777778e-16 |
Litres per hour to Teaspoons per second (l/h to tsp/s) | 0.0563567045 |
Litres per hour to Tablespoons per second (l/h to Tbs/s) | 0.01878556816667 |
Litres per hour to Cubic inches per second (l/h to in3/s) | 0.01695111815945 |
Litres per hour to Cubic inches per minute (l/h to in3/min) | 1.0170670895671 |
Litres per hour to Cubic inches per hour (l/h to in3/h) | 61.024025374023 |
Litres per hour to Fluid Ounces per second (l/h to fl-oz/s) | 0.009392784083333 |
Litres per hour to Fluid Ounces per minute (l/h to fl-oz/min) | 0.563567045 |
Litres per hour to Fluid Ounces per hour (l/h to fl-oz/h) | 33.8140227 |
Litres per hour to Cups per second (l/h to cup/s) | 0.001174098010417 |
Litres per hour to Pints per second (l/h to pnt/s) | 0.0005870490052083 |
Litres per hour to Pints per minute (l/h to pnt/min) | 0.0352229403125 |
Litres per hour to Pints per hour (l/h to pnt/h) | 2.11337641875 |
Litres per hour to Quarts per second (l/h to qt/s) | 0.0002935245026042 |
Litres per hour to Gallons per second (l/h to gal/s) | 0.00007338112565104 |
Litres per hour to Gallons per minute (l/h to gal/min) | 0.004402867539063 |
Litres per hour to Gallons per hour (l/h to gal/h) | 0.2641720523438 |
Litres per hour to Cubic feet per second (l/h to ft3/s) | 0.000009809634700287 |
Litres per hour to Cubic feet per minute (l/h to ft3/min) | 0.0005885780820172 |
Litres per hour to Cubic feet per hour (l/h to ft3/h) | 0.03531468492103 |
Litres per hour to Cubic yards per second (l/h to yd3/s) | 3.6331926968299e-7 |
Litres per hour to Cubic yards per minute (l/h to yd3/min) | 0.00002179915618098 |
Litres per hour to Cubic yards per hour (l/h to yd3/h) | 0.001307949370859 |