Litres per second (l/s) | Cubic meters per hour (m3/h) |
---|---|
0 | 0 |
1 | 3.6 |
2 | 7.2 |
3 | 10.8 |
4 | 14.4 |
5 | 18 |
6 | 21.6 |
7 | 25.2 |
8 | 28.8 |
9 | 32.4 |
10 | 36 |
20 | 72 |
30 | 108 |
40 | 144 |
50 | 180 |
60 | 216 |
70 | 252 |
80 | 288 |
90 | 324 |
100 | 360 |
1000 | 3600 |
To convert between Litres per second (L/s) and Cubic meters per hour (/h), we need to understand the relationships between these units of volume and time
Understanding the basic relationships:
To convert from L/s to /h, you'll use the following steps:
Convert Litres to Cubic meters: Multiply the value in Litres by to get the equivalent in Cubic meters.
Convert seconds to hours: Multiply the value in per second by to get the equivalent per hour.
Formula:
Therefore, 1 L/s is equal to 3.6 /h.
To convert from /h to L/s, you'll perform the reverse operations:
Convert Cubic meters to Litres: Multiply the value in Cubic meters by to get the equivalent in Litres.
Convert hours to seconds: Divide the value in per hour by to get the equivalent per second.
Formula:
Therefore, 1 /h is approximately equal to 0.27777 L/s.
While there isn't a specific law directly associated with this simple volume flow rate conversion, it's based on the fundamental definitions of volume and time units within the International System of Units (SI). The SI system is maintained by the International Bureau of Weights and Measures (BIPM).
Water flow in a river:
Industrial processes:
HVAC Systems:
Sprinkler Systems
See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Cubic meters per hour to other unit conversions.
Litres per second (L/s) is a unit used to measure volume flow rate, indicating the volume of liquid or gas that passes through a specific point in one second. It is a common unit in various fields, particularly in engineering, hydrology, and medicine, where measuring fluid flow is crucial.
A litre is a metric unit of volume equal to 0.001 cubic meters (). Therefore, one litre per second represents 0.001 cubic meters of fluid passing a point every second.
The relationship can be expressed as:
Litres per second is derived by dividing a volume measured in litres by a time measured in seconds:
For example, if 5 litres of water flow from a tap in 1 second, the flow rate is 5 L/s.
While there isn't a specific "law" directly named after litres per second, the measurement is heavily tied to principles of fluid dynamics, particularly:
Continuity Equation: This equation states that for incompressible fluids, the mass flow rate is constant throughout a pipe or channel. It's mathematically expressed as:
Where:
Bernoulli's Principle: This principle relates the pressure, velocity, and height of a fluid in a flow. It's essential for understanding how flow rate affects pressure in fluid systems.
For further reading, explore resources from reputable engineering and scientific organizations, such as the American Society of Civil Engineers or the International Association for Hydro-Environment Engineering and Research.
Cubic meters per hour () is a unit of volumetric flow rate. It quantifies the volume of a substance that passes through a specific area per unit of time, specifically, the number of cubic meters that flow in one hour. It's commonly used for measuring the flow of liquids and gases in various industrial and environmental applications.
A cubic meter () is the SI unit of volume. It represents the amount of space occupied by a cube with sides of 1 meter each. Think of it as a volume equal to filling a cube that is 1 meter wide, 1 meter long, and 1 meter high.
"Per hour" indicates the rate at which the cubic meters are moving. So, a flow rate of 1 means that one cubic meter of substance passes a specific point every hour.
The volumetric flow rate (Q) in cubic meters per hour can be calculated using the following formula:
Where:
Several factors can influence the flow rate measured in cubic meters per hour:
While there's no specific "law" or famous historical figure directly associated with the unit "cubic meters per hour," the underlying principles are rooted in fluid dynamics and thermodynamics. Figures like Isaac Newton (laws of motion, viscosity) and Daniel Bernoulli (Bernoulli's principle relating pressure and velocity) laid the groundwork for understanding fluid flow, which is essential for measuring and utilizing flow rates in .
Convert 1 l/s to other units | Result |
---|---|
Litres per second to Cubic Millimeters per second (l/s to mm3/s) | 1000000 |
Litres per second to Cubic Centimeters per second (l/s to cm3/s) | 1000 |
Litres per second to Cubic Decimeters per second (l/s to dm3/s) | 1 |
Litres per second to Cubic Decimeters per minute (l/s to dm3/min) | 60 |
Litres per second to Cubic Decimeters per hour (l/s to dm3/h) | 3600 |
Litres per second to Cubic Decimeters per day (l/s to dm3/d) | 86400 |
Litres per second to Cubic Decimeters per year (l/s to dm3/a) | 31557600 |
Litres per second to Millilitres per second (l/s to ml/s) | 1000 |
Litres per second to Centilitres per second (l/s to cl/s) | 100 |
Litres per second to Decilitres per second (l/s to dl/s) | 10 |
Litres per second to Litres per minute (l/s to l/min) | 60 |
Litres per second to Litres per hour (l/s to l/h) | 3600 |
Litres per second to Litres per day (l/s to l/d) | 86400 |
Litres per second to Litres per year (l/s to l/a) | 31557600 |
Litres per second to Kilolitres per second (l/s to kl/s) | 0.001 |
Litres per second to Kilolitres per minute (l/s to kl/min) | 0.06 |
Litres per second to Kilolitres per hour (l/s to kl/h) | 3.6 |
Litres per second to Cubic meters per second (l/s to m3/s) | 0.001 |
Litres per second to Cubic meters per minute (l/s to m3/min) | 0.06 |
Litres per second to Cubic meters per hour (l/s to m3/h) | 3.6 |
Litres per second to Cubic meters per day (l/s to m3/d) | 86.4 |
Litres per second to Cubic meters per year (l/s to m3/a) | 31557.6 |
Litres per second to Cubic kilometers per second (l/s to km3/s) | 1e-12 |
Litres per second to Teaspoons per second (l/s to tsp/s) | 202.8841362 |
Litres per second to Tablespoons per second (l/s to Tbs/s) | 67.6280454 |
Litres per second to Cubic inches per second (l/s to in3/s) | 61.024025374023 |
Litres per second to Cubic inches per minute (l/s to in3/min) | 3661.4415224414 |
Litres per second to Cubic inches per hour (l/s to in3/h) | 219686.49134648 |
Litres per second to Fluid Ounces per second (l/s to fl-oz/s) | 33.8140227 |
Litres per second to Fluid Ounces per minute (l/s to fl-oz/min) | 2028.841362 |
Litres per second to Fluid Ounces per hour (l/s to fl-oz/h) | 121730.48172 |
Litres per second to Cups per second (l/s to cup/s) | 4.2267528375 |
Litres per second to Pints per second (l/s to pnt/s) | 2.11337641875 |
Litres per second to Pints per minute (l/s to pnt/min) | 126.802585125 |
Litres per second to Pints per hour (l/s to pnt/h) | 7608.1551075 |
Litres per second to Quarts per second (l/s to qt/s) | 1.056688209375 |
Litres per second to Gallons per second (l/s to gal/s) | 0.2641720523438 |
Litres per second to Gallons per minute (l/s to gal/min) | 15.850323140625 |
Litres per second to Gallons per hour (l/s to gal/h) | 951.0193884375 |
Litres per second to Cubic feet per second (l/s to ft3/s) | 0.03531468492103 |
Litres per second to Cubic feet per minute (l/s to ft3/min) | 2.1188810952621 |
Litres per second to Cubic feet per hour (l/s to ft3/h) | 127.13286571572 |
Litres per second to Cubic yards per second (l/s to yd3/s) | 0.001307949370859 |
Litres per second to Cubic yards per minute (l/s to yd3/min) | 0.07847696225152 |
Litres per second to Cubic yards per hour (l/s to yd3/h) | 4.7086177350915 |